Markenname: | HeTai |
Modellnummer: | 57BYGHM |
MOQ: | 50 |
Preis: | USD |
Lieferzeit: | 25 TAGE |
Zahlungsbedingungen: | L/C, D/P, T/T, Western Union, MoneyGram |
57BYGHM mit Schrittgetriebemotor ISO Getriebe CER-ROHS drehmomentstarkem lärmarmem
*Products können Getriebe 52, 56mm zusammenbringen
56mm Pulvermetallurgie Getriebetoleranzdrehmoment
Stadium 1: Bewertetes Toleranzdrehmoment 2 N.m, maximale 6 N.m
Stadium 2: Bewertetes Toleranzdrehmoment 8 N.m, maximale 25 N.m
Stadium 3: Bewertetes Toleranzdrehmoment 16 N.m maximale 50 N.m
52mm Getriebematerial: Zinklegierung
56mm Getriebematerial: Pulverisieren Sie Metallurgie, verzinken Sie Legierung u. Technikplastik.
BEWEGUNGSteil elektrische Spezifikation:
MODELL | SCHRITT-WINKEL (°/STEP) |
ANSCHLUSSLEITUNG (NEIN) |
SPANNUNG (V) |
STROM (A/PHASE) |
WIDERSTAND (Ω/PHASE) |
INDUKTANZ (MH/PHASE) |
HALTEMOMENT (KG.CM) |
BEWEGUNGShöhe L (MILLIMETER) |
BEWEGUNGSgewicht (Kilogramm) |
---|---|---|---|---|---|---|---|---|---|
57BYGHM002-01 | 0,9 | 6 | 2,8 | 2,0 | 1,4 | 2,0 | 3,5 | 41 | 0,45 |
57BYGHM200-03A | 0,9 | 4 | 3,4 | 1,0 | 3,4 | 12 | 7,0 | 51 | 0,56 |
57BYGHM203-04 | 0,9 | 6 | 12 | 0,38 | 32,0 | 38 | 5,5 | 51 | 0,56 |
57BYGHM401-09 | 0,9 | 6 | 7,4 | 1,0 | 7,4 | 17 | 9,0 | 56 | 0,70 |
57BYGHM414 | 0,9 | 4 | 1,7 | 4,2 | 0,4 | 1,0 | 11 | 56 | 0,70 |
57BYGHM604-17 | 0,9 | 4 | 3,2 | 2,8 | 1,13 | 6,4 | 15 | 78 | 1,00 |
57BYGHM601-05 | 0,9 | 6 | 8,6 | 1,0 | 8,6 | 20 | 13 | 78 | 1,00 |
*Products können durch speziellen Antrag besonders angefertigt werden.
*Products können Getriebe 42,52,57,63Millimeter zusammenbringen
Aus Durchmesser 42mm Pulvermetallurgie
Unterkunft des Materials | Tragen am Ertrag | Radiallast (10mm vom Flansch) N | Axiale Last der Welle (N) | Welleneinpreßkraft maximal (N) | Radialspiel der Welle (Millimeter) | Gestoßenes Spiel der Welle (Millimeter) | Rückprall am Nulllast (°) |
Pulvermetallurgie | Gleitlager | ≤120 | ≤80 | ≤500 | ≤0.03 | ≤0.1 | ≤1.5 |
Reduzierungsverhältnis | Bewertetes Toleranzdrehmoment (Nanometer) | Maximales Momentantoleranzdrehmoment (Nanometer) | Efficiency% |
Länge L (Millimeter) |
Gewicht (g) | Zahl von Räderwerken |
1/4 | 1,0 | 3,0 | 81% | 32,5 | 170 | 1 |
1/6 | ||||||
1/15 | 4,0 | 12 | 72% | 46,3 | 207 | 2 |
1/18 | ||||||
1/25 | ||||||
1/36 | ||||||
1/54 |
8,0
|
25
|
65%
|
60,1
|
267
|
3 |
1/65 | ||||||
1/90 | ||||||
1/112 | ||||||
1/155 | ||||||
1/216 | 10 | 30 | 65% | 60,1 | 267 |
Mechanisches Maß
Aus Durchmesser 52mm Zinklegierung
Unterkunft des Materials | Tragen am Ertrag | Radiallast (10mm vom Flansch) N | Axiale Last der Welle (N) | Welleneinpreßkraft maximal (N) | Radialspiel der Welle (Millimeter) | Gestoßenes Spiel der Welle (Millimeter) | Rückprall am Nulllast (°) |
Zinklegierung | Gleitlager | ≤450 | ≤200 | ≤1000 | ≤0.03 | ≤0.1 | ≤1.5 |
Reduzierungsverhältnis | Bewertetes Toleranzdrehmoment (Nanometer) | Maximales Momentantoleranzdrehmoment (Nanometer) | Efficiency% |
Länge L (Millimeter) |
Gewicht (g) | Zahl von Räderwerken | Reduzierungsverhältnis |
1/13 | 1/13 | 2,0 | 6,0 | 81% | 52,9 | 345 | 1 |
Mechanisches Maß
Aus Durchmesser 56mm Pulvermetallurgie
Unterkunft des Materials | Tragen am Ertrag | Radiallast (10mm vom Flansch) N | Axiale Last der Welle (N) | Welleneinpreßkraft maximal (N) | Radialspiel der Welle (Millimeter) | Gestoßenes Spiel der Welle (Millimeter) | Rückprall am Nulllast (°) |
Pulvermetallurgie | Gleitlager | ≤450 | ≤200 | ≤1000 | ≤0.03 | ≤0.1 | ≤1.5 |
Reduzierungsverhältnis | Bewertetes Toleranzdrehmoment (Nanometer) | Maximales Momentantoleranzdrehmoment (Nanometer) | Efficiency% |
Länge L (Millimeter) |
Gewicht (g) | Zahl von Räderwerken |
1/4 | 2,0 | 6,0 | 81% | 41,3 | 491 | 1 |
1/6 | ||||||
1/15 | 8,0 | 25 | 72% | 59,6 | 700 | 2 |
1/18 | ||||||
1/26 | ||||||
1/47 | 16 |
50
|
72% | 59,6 | 700 | 2 |
1/66 |
Mechanisches Maß
Aus Technikplastik des Durchmessers 56mm
Unterkunft des Materials | Tragen am Ertrag | Radiallast (10mm vom Flansch) N | Axiale Last der Welle (N) | Welleneinpreßkraft maximal (N) | Radialspiel der Welle (Millimeter) | Gestoßenes Spiel der Welle (Millimeter) | Rückprall am Nulllast (°) |
Technikplastik | Gleitlager | ≤450 | ≤200 | ≤1000 | ≤0.03 | ≤0.1 | ≤1.5 |
Reduzierungsverhältnis | Bewertetes Toleranzdrehmoment (Nanometer) | Maximales Momentantoleranzdrehmoment (Nanometer) | Efficiency% |
Länge L (Millimeter) |
Gewicht (g) | Zahl von Räderwerken |
1/15 | 8,0 | 25 |
72%
|
61,6 | 450 |
2
|
1/18 | ||||||
1/26 | ||||||
1/47 | 16 |
50
|
||||
1/66 |
Mechanisches Maß
Herausdurchmesser 56 Millimeter-Zinklegierung
Unterkunft des Materials | Tragen am Ertrag | Radiallast (10mm vom Flansch) N | Axiale Last der Welle (N) | Welleneinpreßkraft maximal (N) | Radialspiel der Welle (Millimeter) | Gestoßenes Spiel der Welle (Millimeter) | Rückprall am Nulllast (°) |
Zinklegierung | Gleitlager | ≤450 | ≤200 | ≤1000 | ≤0.03 | ≤0.1 | ≤1.5 |
Reduzierungsverhältnis | Bewertetes Toleranzdrehmoment (Nanometer) | Maximales Momentantoleranzdrehmoment (Nanometer) | Efficiency% |
Länge L (Millimeter) |
Gewicht (g) | Zahl von Räderwerken |
1/4 |
2,0
|
6 | 81% |
43,3
|
350 | 1 |
1/6 | ||||||
1/13 | 52,7 | 400 |
Mechanisches Maß
Aus Durchmesser 63mm Zinklegierung
Unterkunft des Materials | Tragen am Ertrag | Radiallast (10mm vom Flansch) N | Axiale Last der Welle (N) | Welleneinpreßkraft maximal (N) | Radialspiel der Welle (Millimeter) | Gestoßenes Spiel der Welle (Millimeter) | Rückprall am Nulllast (°) |
Zinklegierung | Gleitlager | ≤450 | ≤200 | ≤1000 | ≤0.03 | ≤0.1 | ≤1.5 |
Reduzierungsverhältnis | Bewertetes Toleranzdrehmoment (Nanometer) | Maximales Momentantoleranzdrehmoment (Nanometer) | Efficiency% |
Länge L (Millimeter) |
Gewicht (g) | Zahl von Räderwerken |
1/8 | 3,0 | 8,0 | 81% | 75,5 | 400 | 1 |
Mechanisches Maß
Getriebebewegungsalterntest
Vorteil des planetarischen Getriebemotors
Breites Geschwindigkeits-Verhältnis mit einer langen Service-Lebensdauer
Für die selbe Menge von Tragfähigkeit, hat ein planetarisches Getriebe eine Lebensdauer des gehobenen Diensts als die traditionellen Getriebe. Deshalb sind diese Getriebe einfach zu behandeln und zu installieren. Diese sind Hauptaspekte, die Leistungsfähigkeit und Zuverlässigkeit in jedem mechanischen System verbessern können.
Wieder ist die Anordnung für Gänge so, dass das gesamte System stabil und zuverlässig bleibt.
Einzigartiger Entwurf für Dichte der hohen Leistung
Dichte der hohen Leistung ist einer der vielen planetarischen Getriebevorteile.
Dieses liegt an den vielen Planeten im Gangsystem hauptsächlich, die leistungsfähige Netzverteilung zulassen.
Indem es die Last unter verschiedenen Planetengetrieben teilt, erhöht das planetarische Getriebe nicht nur, Leistungsfähigkeit aber verringert auch die Möglichkeiten der Abnutzung.